PID Control Law for Trajectory Tracking Error Using Time-Delay Adaptive Neural Networks for Chaos Synchronization
نویسندگان
چکیده
This paper presents an application of TimeDelay adaptive neural networks based on a dynamic neural network for trajectory tracking of unknown nonlinear plants. Our approach is based on two main methodologies: the first one employs Time-Delay neural networks and Lyapunov-Krasovskii functions and the second one is Proportional-Integral-Derivative (PID) control for nonlinear systems. The proposed controller structure is composed of a neural identifier and a control law defined by using the PID approach. The new control scheme is applied via simulations to Chaos Synchronization. Experimental results have shown the usefulness of the proposed approach for Chaos Production. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system.
منابع مشابه
PID Control Law for Trajectory Tracking Error Using Time-Delay Adaptive Neural Networks for Chaos Synchronization
This paper presents an application of TimeDelay adaptive neural networks based on a dynamic neural network for trajectory tracking of unknown nonlinear plants. Our approach is based on two main methodologies: the first one employs Time-Delay neural networks and Lyapunov-Krasovskii functions and the second one is Proportional-Integral-Derivative (PID) control for nonlinear systems. The proposed ...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computación y Sistemas
دوره 19 شماره
صفحات -
تاریخ انتشار 2015